1. Handbook
  2. Subjects
  3. Data Analysis in Clinical Research

Data Analysis in Clinical Research (CLRS90010)

Graduate courseworkPoints: 12.5On Campus (Parkville)

You’re viewing the 2017 Handbook:
Or view archived Handbooks
You’re currently viewing the 2017 version of this subject


Year of offer2017
Subject levelGraduate coursework
Subject codeCLRS90010
FeesSubject EFTSL, Level, Discipline & Census Date

Data analysis methods are an integral part of modern clinical research. They are powerful techniques that enable researchers to draw meaningful conclusions from data collected through observation, survey, or experimentation.

However, data analysis is a huge discipline with different paradigms, schools of thought and alternative methodologies. Therefore consideration of the appropriate methods used must be undertaken when designing a study and selecting variables and groups.

This subject introduces students to the basic principles of qualitative and quantitative data analysis techniques. It will provide a functional grounding in the theoretical concepts behind each type of analysis, as well as exploration of the interpretation of data and the difference, where applicable, between clinical vs statistical significance.

Analysis techniques to be explored include:


  • Descriptive statistics
  • Principles of statistical inference
  • Cross-tabulations: Chi-Square, Fisher’s exact test, relative risk, and odds ratios
  • Comparisons of means: t-tests and ANOVA
  • Linear association: correlation and simple regression
  • Measurement of exposure
  • Sample size and power
  • Data storage, management, collation and coding
  • Quantitative analysis software


  • Documentation of data and the process of data collection
  • Data transcription
  • Effective data storage and management
  • Requirements of data coding
  • Iterative, content/thematic, narrative, discourse, framework and grounded theory analysis
  • Writing up qualitative research
  • Qualitative analysis software

Intended learning outcomes

On completion of this subject students should be able to:

  • describe the theoretical concepts behind a range of qualitative and quantitative data analysis techniques
  • compare and contrast the strengths and weaknesses of different qualitative and quantitative data analysis techniques
  • describe a strategy for selecting an appropriate data analysis technique based on the study design selected and/or research data collected
  • competently perform a range of basic data analysis techniques using appropriate analysis software and interpret analysis output/s
  • provide a rationale for the importance of statistical power and perform power calculations
  • identify and discuss the key elements associated with ensuring data integrity including storage, management, collation and coding
  • critically compare and contrast statistical vs clinical significance and its relevance to clinical practice
  • demonstrate confidence in discussing the validity of data analysis outcomes reported in the scientific literature.

Generic skills

  • to engage with unfamiliar problems and identify relevant data analysis strategies
  • to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of data analysis
  • communicate advanced data analysis concepts in written and oral form;
  • the ability to comprehend complex data analysis information
  • exercise responsibility for their own learning;
  • manage their time effectively.

Last updated: 19 October 2018