Handbook home
Genes: Organisation and Function (GENE30002)
Undergraduate level 3Points: 12.5On Campus (Parkville)
Overview
Availability | Semester 1 |
---|---|
Fees | Look up fees |
This subject focuses on gene structure, function and regulation, which form the molecular basis of many important biological phenomena such as short-term organismal and cellular responses to rapid changes in environmental conditions and long-term controls of development. The molecular mechanisms underlying these phenomena are frequently exploited in biotechnology, medical and agricultural applications. The modern molecular techniques used to study these processes will be presented. The topics to be covered in this subject include prokaryotic and eukaryotic gene structure; action and regulation; genomic and recombinant DNA methodology; molecular genetic manipulation of a wide variety of organisms to generate defined changes in the genome; the cell cycle and developmental genetics.
Intended learning outcomes
Upon completion of this subject students should have: developed a general understanding of our current knowledge of the molecular structure of genes and the molecular basis of genetic processes, including the various mechanisms that regulate the expression of genes, in both prokaryotes and eukaryotes; an appreciation of the diversity of recently discovered molecular mechanisms for generating gene products and controlling their expression and for gene evolution; an understanding of techniques involved in combining classical genetics with recombinant DNA analysis and genomics and the application of these tools to solve specific biological problems; an appreciation for, and understanding of, the way in which information for this field is obtained and presented through the study of primary research papers and review articles; and acquired the basic concepts and knowledge to enable them to critically appraise newly reported findings in molecular genetics and do advanced courses in a wide range of areas of cellular and molecular biology.
Generic skills
Completion of this subject is expected to enhance the generic skills of a student in: the ability to understand how our current scientific models rely on the basic principles established by previous classical experiments; the ability to understand how complex new scientific data is acquired and presented in the form of new testable paradigms; the ability to read and interpret scientific literature in order to answer detailed questions on both theory and methodology; an appreciation for how modern science is informed by cross-disciplinary studies leading to technological advances; the use of information technology to acquire relevant knowledge for their understanding of the current status of the field and its relevance to society.
Last updated: 3 October 2024