1. Handbook
  2. Subjects
  3. Chemical Product Development

Chemical Product Development (CHEN90035)

Graduate courseworkPoints: 12.5On Campus (Parkville)

You’re viewing the 2019 Handbook:
Or view archived Handbooks

Overview

Year of offer2019
Subject levelGraduate coursework
Subject codeCHEN90035
Campus
Parkville
Availability
Summer Term
FeesSubject EFTSL, Level, Discipline & Census Date

AIMS

Internationally, approximately fifty percent of chemical engineers are employed in positions related to chemical product development and design. The aim of this module is to introduce students to the concepts behind chemical product design. This includes an introduction to the chemical product design method as well as the concept of management or decision gates in the process. This will include both educational and real world examples of how chemical product development takes advantage of fundamental aspects of chemical engineering including transport diffusion, chemical kinetics, interfacial phenomena and microstructure and flow.

INDICATIVE CONTENT

Chemical product design approach and the four key aspects, different class of chemical products. Estimation of chemical product design specifications based on diffusion, reaction and transport phenomena. The role of surfaces in processing and materials manufacture. How to use a basic knowledge of interfacial phenomena to control the microstructure of a chemical product. At an introductory level, how inter-particle forces affect coagulation, dispersion and stability criterion as well as parameters that influence flow and gelation properties. The role of molecular additives in controlling dispersion and emulsion and stability in an applied framework, such as using HLB index.

Intended learning outcomes

Understand the chemical product design approach and the four key aspects of this process as well as the different classes of chemical products (ME ILOs 1,3)

Generic skills

  • Capacity for independent thought
  • Awareness of advanced technologies in the discipline
  • Ability to apply knowledge of basic science and engineering fundamentals
  • Ability to undertake problem identification, formulation and solution
  • Ability to utilise a systems approach to design and operational performance

Last updated: 4 September 2019