Handbook home
Embedded System Design (ELEN90066)
Graduate courseworkPoints: 12.5On Campus (Parkville)
Overview
Availability | Semester 2 |
---|---|
Fees | Look up fees |
AIMS
This subject provides a practical introduction to the design of microprocessor-based electronic systems. The lectures and project work will expose students to the various stages in an engineering project (design, implementation, testing and documentation) and a range of embedded system concepts.
INDICATIVE CONTENT
Topics covered may include: digital computer architecture, example microprocessor architectures, pipelining and caching, system-level programming in assembly language and C for a specific microprocessor; bus standards and protocols, bus interfacing, interrupt servicing; operating systems concepts, multi-tasking, resource management and real-time issues; interfacing to the analog world via analog-to-digital and digital-to-analog converters; standard software tools, including compilers and debuggers, schematic and PCB layout with an emphasis on design for high speed switching circuits.
This material will be complemented by exposure to standard software tools, including compilers and debuggers, schematic and board layout software. The subject will include a level of industry engagement, to provide broader examples of engineering projects, through guest lectures.
This subject has been integrated with the Skills Towards Employment Program (STEP) and contains activities that can assist in the completion of the Engineering Practice Hurdle (EPH).
Intended learning outcomes
INTENDED LEARNING OUTCOMES (ILOs)
- Design, build and test the hardware components (microprocessor, bus and peripheral interfacing) of an embedded system
- Develop and test the low-level software components of an embedded system
- Conduct a small embedded system design project
Generic skills
Upon completion of this subject, students will have developed the following skills:
- Ability to apply knowledge of basic science and engineering fundamentals;
- In-depth technical competence in at least one engineering discipline;
- Ability to undertake problem identification, formulation and solution;
- Ability to utilise a systems approach to design and operational performance;
- Capacity for independent critical thought, rational inquiry and self-directed learning;
- Ability to function effectively as an individual and in multi-disciplinary and multi-cultural teams, with the capacity to be a leader or manager as well as an effective team member;
- Ability to communicate effectively, with the engineering team and with the community at large.
Last updated: 3 November 2022