Handbook home
Material and Energy Balances (CHEN20010)
Undergraduate level 2Points: 12.5Dual-Delivery (Parkville)
Please refer to the return to campus page for more information on these delivery modes and students who can enrol in each mode based on their location.
About this subject
- Overview
- Eligibility and requirements
- Assessment
- Dates and times
- Further information
- Timetable(opens in new window)
Contact information
Semester 2
Prof David Shallcross
Overview
Availability | Semester 2 - Dual-Delivery |
---|---|
Fees | Look up fees |
AIMS
This subject introduces chemical engineering flow sheet calculations, including material balances, energy balances and compositions of mixtures. The concept of conversion of mass is developed as the basis for determining mass flows in chemical processing systems involving chemical reactions and separation systems. Then the concept of conservation of energy is developed as the basis for determining energy flows in and around chemical processing systems, evaluation of enthalpy changes with and without phase change, simplified energy balances for batch, steady-state and adiabatic systems, estimation of heats of reaction, combustion, solution and dilution, energy balances in reacting systems, simultaneous material and energy balances.
This subject provides the basis for all the chemical engineering subjects that follow. The calculations introduced in this subject are the most common type of calculations performed by professional chemical engineers working in all sectors of industry.
The teaching of process safety is critical to any undergraduate chemical engineering program. Students need to understand their responsibilities to themselves, their work colleagues and the wider community. They need to be aware of safe practices and also the consequences that may arise when those safe practices are not followed. This subject introduces students to concepts of process safety and the consequences when safety management systems fail.
INDICATIVE CONTENT
Topics covered include material balances around single process units and groups of units, involving simple systems and recycle streams, and non-reacting and reacting systems. Total, component, and elemental balances are covered. Other topics include systems of units and unit conversion, and compositions of mixtures.
Energy balances: The concepts of energy, work and heat, the units of energy, internal energy, enthalpy, heat capacity, latent heat, evaluation of enthalpy changes. The general energy balance equation, enthalpy balances, system boundaries. Enthalpies of pure components and selection of enthalpy data conditions.
Energy balances and chemical reactions: Heat of reaction, definitions of standard heat of reaction, standard heat of formation, standard heat of combustion. Hess' Law of adding stoichiometric equations. Adiabatic reaction temperature. Heats of solutions and dilution, and use of enthalpy-concentration charts. Simultaneous material and energy balances.
Safety case studies, safe practices, personal and process safety.
Intended learning outcomes
On completion of this subject the student is expected to:
- Apply knowledge of basic science and engineering fundamentals to solve material and energy balances
- Be able to model material and energy flows around reacting chemical systems
- Define and scope engineering problems and formulate suitable strategies for problem solution
- Have developed an appreciation for the importance of safety in the process industries.
Generic skills
- Ability to apply knowledge of basic science and engineering fundamentals
- Ability to undertake problem identification, formulation and solution
- Ability to utilise a systems approach to design and operational performance.
Last updated: 7 September 2023
Eligibility and requirements
Prerequisites
One of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST10006 | Calculus 2 |
Summer Term (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
Semester 1 (Dual-Delivery - Parkville)
|
12.5 |
MAST10009 | Accelerated Mathematics 2 | Semester 2 (Dual-Delivery - Parkville) |
12.5 |
MAST10021 | Calculus 2: Advanced | Semester 2 (Dual-Delivery - Parkville) |
12.5 |
MAST10019 - Calculus Extension Studies
AND
One of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
CHEM10003 | Chemistry 1 |
Semester 1 (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
CHEM10006 | Chemistry for Biomedicine |
Semester 1 (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
OR
Selection of one of the following:
- Biochemical specialisation (formal) in the MC-ENG Master of Engineering
- Chemical specialisation (formal) in the MC-ENG Master of Engineering
- Chemical with Business specialisation (formal) in the MC-ENG Master of Engineering
- Materials specialisation (formal) in the MC-ENG Master of Engineering
Corequisites
None
Non-allowed subjects
CHEN20007
CHEN20008
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 7 September 2023
Assessment
Description | Timing | Percentage |
---|---|---|
One team based presentation with 3 to 4 team members of approximately 15 to 20 minutes. Intended Learning Outcomes (ILOs) 1, 3 and 4 are addressed in this activity.
| From Week 5 to Week 7 | 10% |
Attendance and participation in two laboratory classes each with a written assignment of approximately 1000 words each (10% each). ILO's 1 to 4 are addressed in these activities.
| From Week 6 to Week 11 | 20% |
One written closed book examination. ILO's 1 to 4 are addressed in the exam.
| During the examination period | 70% |
Last updated: 7 September 2023
Dates & times
- Semester 2
Principal coordinator David Shallcross Mode of delivery Dual-Delivery (Parkville) Contact hours 18 x two-hour lecture and practice classes, 11 x two-hour tutorials/workshops and 2 x three-hour laboratory classes in one semester Total time commitment 170 hours Teaching period 26 July 2021 to 24 October 2021 Last self-enrol date 6 August 2021 Census date 31 August 2021 Last date to withdraw without fail 24 September 2021 Assessment period ends 19 November 2021 Semester 2 contact information
Prof David Shallcross
Time commitment details
170 hours
Last updated: 7 September 2023
Further information
- Texts
Prescribed texts
Shallcross D.C., “Physical Property Data Book for Engineers and Scientists”, IChemE, London, 2004
- Related Handbook entries
This subject contributes to the following:
Type Name Specialisation (formal) Biochemical Specialisation (formal) Chemical with Business Informal specialisation Science Discipline subjects - new generation B-SCI Specialisation (formal) Chemical Breadth Track Chemical Engineering - Breadth options
This subject is available as breadth in the following courses:
- Bachelor of Arts
- Bachelor of Commerce
- Bachelor of Design
- Bachelor of Environments
- Bachelor of Fine Arts (Acting)
- Bachelor of Fine Arts (Animation)
- Bachelor of Fine Arts (Dance)
- Bachelor of Fine Arts (Film and Television)
- Bachelor of Fine Arts (Music Theatre)
- Bachelor of Fine Arts (Production)
- Bachelor of Fine Arts (Screenwriting)
- Bachelor of Fine Arts (Theatre)
- Bachelor of Fine Arts (Visual Art)
- Bachelor of Music
- Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
Additional information for this subject
Subject coordinator approval required
- Available to Study Abroad and/or Study Exchange Students
This subject is available to students studying at the University from eligible overseas institutions on exchange and study abroad. Students are required to satisfy any listed requirements, such as pre- and co-requisites, for enrolment in the subject.
Last updated: 7 September 2023