Handbook home
Systems Modelling and Analysis (MCEN30020)
Undergraduate level 3Points: 12.5Dual-Delivery (Parkville)
Please refer to the return to campus page for more information on these delivery modes and students who can enrol in each mode based on their location.
About this subject
- Overview
- Eligibility and requirements
- Assessment
- Dates and times
- Further information
- Timetable(opens in new window)
Contact information
Semester 1
Semester 2
Overview
Availability | Semester 1 - Dual-Delivery Semester 2 - Dual-Delivery |
---|---|
Fees | Look up fees |
This subject will cover the modelling of a range of physical systems across multiple domains as ordinary differential equations, and then introduce the mathematical techniques to analyse their open loop behaviour.
Topics include:
- Development of low order models of a range of electrical, thermal, mechanical, pneumatic and hydraulic dynamic systems
- Different representations of these systems (time and, frequency domains) and transformations between them (Laplace, Fourier and Z-transforms)
- Representations of systems – transfer functions, Bode plots, state space, block diagrams, etc
- Identification of linear time invariant systems (least squares identification)
- Relation to time domain properties of open loop responses – stability, oscillations, etc.
MATLAB will be used throughout the course to complement the presented concepts.
Intended learning outcomes
Having completed this subject it is expected that the student be able to:
- Apply fundamental mathematical tools to model, analyse and design signals and systems in both time-domain and frequency-domain
- Recognise the broad applicability of the mathematics of signals and systems theory, particularly within mechanical and mechatronic engineering
- Identify the parameters of linear time invariant systems using input-output data
- Use MATLAB to study the behaviour of signals and systems as they arise in a variety of contexts.
Generic skills
On completion of this subject, students should have developed the following skills:
- The ability to apply knowledge of science and engineering fundamentals
- The ability to undertake problem identification, formulation, and solution
- The ability to utilise a systems approach to complex problems and to design and operational performance
- The ability to undertake problem identification, formulation, and solution.
Last updated: 3 November 2022
Eligibility and requirements
Prerequisites
All of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
ENGR20004 | Engineering Mechanics |
Semester 1 (Dual-Delivery - Parkville)
Summer Term (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
ELEN20005 | Foundations of Electrical Networks |
Semester 1 (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
MAST20029 | Engineering Mathematics |
Semester 1 (Dual-Delivery - Parkville)
Summer Term (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
OR
All of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
ENGR20004 | Engineering Mechanics |
Semester 1 (Dual-Delivery - Parkville)
Summer Term (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
ELEN20005 | Foundations of Electrical Networks |
Semester 1 (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
MAST20009 | Vector Calculus |
Semester 1 (Dual-Delivery - Parkville)
Semester 2 (Dual-Delivery - Parkville)
|
12.5 |
MAST20030 | Differential Equations | Semester 2 (Dual-Delivery - Parkville) |
12.5 |
Corequisites
None
Non-allowed subjects
Code | Name | Teaching period | Credit Points |
---|---|---|---|
BMEN30006 | Circuits and Systems | Semester 1 (Dual-Delivery - Parkville) |
12.5 |
ELEN30012 | Signals and Systems |
Semester 2 (Dual-Delivery - Parkville)
Semester 1 (Dual-Delivery - Parkville)
|
12.5 |
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 3 November 2022
Assessment
Description | Timing | Percentage |
---|---|---|
Assignment 1
| Week 5 | 10% |
Assignment 2
| Week 8 | 15% |
Assignment 3
| Week 11 | 15% |
Written exam, closed book
| End of semester | 60% |
Additional details
- Assignments up to 30 pages in total,
Last updated: 3 November 2022
Dates & times
- Semester 1
Principal coordinator Simon Illingworth Mode of delivery Dual-Delivery (Parkville) Contact hours 60 hours (3 hours of lectures and a 2 hour workshop each week) Total time commitment 170 hours Teaching period 1 March 2021 to 30 May 2021 Last self-enrol date 12 March 2021 Census date 31 March 2021 Last date to withdraw without fail 7 May 2021 Assessment period ends 25 June 2021 Semester 1 contact information
- Semester 2
Principal coordinator Airlie Chapman Mode of delivery Dual-Delivery (Parkville) Contact hours 60 hours (3 hours of lectures and a 2 hour workshop each week) Total time commitment 170 hours Teaching period 26 July 2021 to 24 October 2021 Last self-enrol date 6 August 2021 Census date 31 August 2021 Last date to withdraw without fail 24 September 2021 Assessment period ends 19 November 2021 Semester 2 contact information
Time commitment details
Expected 170 hours
Last updated: 3 November 2022
Further information
- Texts
Prescribed texts
There are no specifically prescribed or recommended texts for this subject.
- Related Handbook entries
This subject contributes to the following:
Type Name Major Mechatronics Systems Informal specialisation Science Discipline subjects - new generation B-SCI Specialisation (formal) Mechanical Major Mechanical Systems Specialisation (formal) Mechatronics Specialisation (formal) Mechanical with Business Informal specialisation Elective subjects for B-BMED Major Mechanical Systems - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
Additional information for this subject
Subject coordinator approval required
- Available to Study Abroad and/or Study Exchange Students
This subject is available to students studying at the University from eligible overseas institutions on exchange and study abroad. Students are required to satisfy any listed requirements, such as pre- and co-requisites, for enrolment in the subject.
Last updated: 3 November 2022