Handbook home
Network Optimisation (MAST90013)
Graduate courseworkPoints: 12.5On Campus (Parkville)
About this subject
Contact information
Semester 2
Overview
Availability | Semester 2 |
---|---|
Fees | Look up fees |
Many practical problems in management, operations research, telecommunication and computer networking can be modelled as optimisation problems on networks. Here the underlying structure is a graph. This subject is an introduction to optimisation problems on networks with a focus on theoretical results and efficient algorithms. It covers classical problems that can be solved in polynomial time, such as shortest paths, maximum matchings, maximum flows, and minimum cost flows. Other topics include complexity and NP-completeness, matroids and greedy algorithms, approximation algorithms, multicommodity flows, and network design. This course is beneficial for all students of discrete mathematics, operations research, and computer science.
Intended learning outcomes
After completing this subject, students should:
- be able to understand aspects of network optimisation problems and the methodologies to solve them;
- develop the abilities needed to design combinatorial algorithms for solving other network problems not covered in the subject;
- have the ability to pursue further studies in this and related areas.
Generic skills
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include:
- problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies;
- analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis;
- collaborative skills: the ability to work in a team;
- time-management skills: the ability to meet regular deadlines while balancing competing commitments.
Last updated: 3 November 2022