Statistical Physics (PHYC30017)
Undergraduate level 3Points: 12.5On Campus (Parkville)
About this subject
Contact information
Semester 2
Overview
Availability | Semester 2 |
---|---|
Fees | Look up fees |
Statistical mechanics, the microscopic basis of classical thermodynamics, is developed in this subject. It is one of the core areas of physics, finding wide application in solid state physics, astrophysics, plasma physics and cosmology.
Using fundamental ideas from quantum physics, a systematic treatment of statistical mechanics is developed for systems in equilibrium. The content of this subject includes ensembles and the basic postulate; the statistical basis of the second and third laws of thermodynamics; canonical, micro-canonical and grand-canonical ensembles and associated statistical and thermodynamic functions; ideal quantum gases; black body radiation; the classical limit and an introduction to real gases and applications to solid state physics.
Intended learning outcomes
Students completing this subject should be able to:
- explain the statistical basis of the second and third laws of thermodynamics and the application of statistical mechanics to a range of problems in physics;
- calculate statistical and thermodynamic functions using the canonical, micro-canonical and grand-canonical ensembles; and
- analyse and interpret mathematical expressions obtained in these calculations.
Generic skills
A student who completes this subject should be able to:
- analyse how to solve a problem by applying simple fundamental laws to more complicated situations.
- apply abstract concepts to real-world situations.
- solve relatively complicated problems using approximations.
- participate as an effective member of a group in tutorial discussions
- manage time effectively in order to be prepared for tutorial classes, undertake the written assignments and the examination.
Last updated: 9 April 2025
Eligibility and requirements
Prerequisites
Physics
Both of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
PHYC20010 | Quantum Mechanics and Special Relativity | Year Long (On Campus - Parkville) |
12.5 |
PHYC20009 | Thermal and Classical Physics | Semester 1 (On Campus - Parkville) |
12.5 |
Or
Code | Name | Teaching period | Credit Points |
---|---|---|---|
PHYC20012 | Quantum and Thermal Physics | Semester 1 (On Campus - Parkville) |
12.5 |
And Mathematics
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST20009 | Vector Calculus |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
And at least one of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST10009 | Accelerated Mathematics 2 | Semester 2 (On Campus - Parkville) |
12.5 |
MAST20026 | Real Analysis |
Semester 2 (On Campus - Parkville)
Semester 1 (On Campus - Parkville)
|
12.5 |
MAST20030 | Differential Equations | Semester 2 (On Campus - Parkville) |
12.5 |
Corequisites
None
Non-allowed subjects
None
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 9 April 2025
Assessment
Additional details
Two assignments each equivalent to 1500 words during the semester (10% each) and a 3-hour written examination in the examination period (80%).
Last updated: 9 April 2025
Dates & times
- Semester 2
Principal coordinator Andy Martin Mode of delivery On Campus (Parkville) Contact hours 2 to 4 hours per week, 36 in total, lectures and problem-solving classes Total time commitment 170 hours Teaching period 24 July 2017 to 22 October 2017 Last self-enrol date 4 August 2017 Census date 31 August 2017 Last date to withdraw without fail 22 September 2017 Assessment period ends 17 November 2017 Semester 2 contact information
Time commitment details
170 hours total time commitment.
Last updated: 9 April 2025
Further information
- Texts
- Subject notes
- Related Handbook entries
This subject contributes to the following:
Type Name Informal specialisation Physics Informal specialisation Physics Major Mathematical Physics Informal specialisation Science-credited subjects - new generation B-SCI and B-ENG. Major Physics Informal specialisation Physics Informal specialisation Chemical Physics - Breadth options
- Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
Last updated: 9 April 2025