Categorical Data & GLMs (POPH90121)
Graduate courseworkPoints: 12.5Online
About this subject
Contact information
Semester 2
Melbourne School of Population and Global Health
OR
Currently enrolled students:
- General information: https://ask.unimelb.edu.au
- Email: Contact Stop 1
Future Students:
- Further Information: MSPGH Website
- Email: Enquiry Form
Overview
Availability | Semester 2 - Online |
---|---|
Fees | Look up fees |
Introduction to and revision of conventional methods for contingency tables especially in epidemiology: odds ratios and relative risks, chi-squared tests for independence, Mantel-Haenszel methods for stratified tables, and methods for paired data. The exponential family of distributions; generalized linear models (GLMs), and parameter estimation for GLMs. Inference for GLMs – including the use of score, Wald and deviance statistics for confidence intervals and hypothesis tests, and residuals. Binary variables and logistic regression models – including methods for assessing model adequacy. Nominal and ordinal logistic regression for categorical response variables with more than two categories. Count data, Poisson regression and log-linear models.
Intended learning outcomes
To enable students to use generalised linear models (GLMs) and other methods to analyse categorical data with proper attention to the underlying assumptions. There is an emphasis on the practical interpretation and communication of results to colleagues and clients who may not be statisticians.
Generic skills
Independent problem solving, facility with abstract reasoning, clarity of written expression, sound communication of technical concepts.
Last updated: 3 November 2022