Experimental Design and Data Analysis (MAST10011)
Undergraduate level 1Points: 12.5On Campus (Parkville)
Overview
Availability(Quotas apply) | Semester 1 Semester 2 |
---|---|
Fees | Look up fees |
This subject provides an understanding of the fundamental concepts of probability and statistics required for experimental design and data analysis in the health sciences. Initially the subject introduces common study designs, random sampling and randomised trials as well as numerical and visual methods of summarising data. It then focuses on understanding population characteristics such as means, variances, proportions, risk ratios, odds ratios, rates, prevalence, and measures used to assess the diagnostic value of a clinical test. Finally, after determining the sampling distributions of some common statistics, confidence intervals will be used to estimate these population characteristics and statistical tests of hypotheses will be developed. The presentation and interpretation of the results from statistical analyses of typical health research studies will be emphasised.
The statistical methods will be implemented using a standard statistical computing package and illustrated on applications from the health sciences.
Intended learning outcomes
On completion of the subject, students should be able to:
- analyse standard data sets, interpreting the results of such analysis and presenting the conclusions in a clear and comprehensible manner;
- understand a range of standard statistical methods which can be applied to biomedical sciences.
- use a statistical computing package to analyse biomedical data;
- choose a form of epidemiological experimental design suitable for a range of standard biomedical experiments.
Generic skills
In addition to learning specific skills that will assist students in their future careers in the health sciences, they will have the opportunity to develop, generic skills that will assist them in any future career path. These include:
- problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies;
- analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis;
- collaborative skills: the ability to work in a team;
- time management skills: the ability to meet regular deadlines while balancing competing commitments;
- computer skills: the ability to use statistical computing packages.
Last updated: 31 October 2023
Eligibility and requirements
Prerequisites
None
Corequisites
None
Non-allowed subjects
Students may only gain credit for one of:
-
Code Name Teaching period Credit Points MAST10010 Data Analysis 1 Semester 2 (On Campus - Parkville)12.5 -
Code Name Teaching period Credit Points MAST10011 Experimental Design and Data Analysis Semester 2 (On Campus - Parkville)Semester 1 (On Campus - Parkville)12.5 -
Code Name Teaching period Credit Points ECON10005 Quantitative Methods 1 Semester 2 (On Campus - Parkville)Semester 1 (On Campus - Parkville)12.5
Students who have completed
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST20005 | Statistics | Semester 2 (On Campus - Parkville) |
12.5 |
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 31 October 2023
Assessment
Additional details
- 1 Hand-written assignments (part 1) with use of software due weeks 3 and 4 (5%)
- 1 Hand-written assignments (part 2) with use of software due weeks 7 and 8 (5%)
- One 40 minute computer-based in-class test due week 11 (10%)
- Best 10 (of 11) online quizzes held weekly from week 2 (10%)
- 3-hour written examination in the examination period (70%)
Last updated: 31 October 2023
Quotas apply to this subject
Dates & times
- Semester 1
Principal coordinator Yao-Ban Chan Mode of delivery On Campus (Parkville) Contact hours 3 x one hour lectures per week, 1 x one hour practice class per week, 1 x one hour computer laboratory class per week Total time commitment 170 hours Teaching period 26 February 2018 to 27 May 2018 Last self-enrol date 9 March 2018 Census date 31 March 2018 Last date to withdraw without fail 4 May 2018 Assessment period ends 22 June 2018 Semester 1 contact information
Email: yaoban@unimelb.edu.au
- Semester 2
Principal coordinator Rheanna Mainzer Mode of delivery On Campus (Parkville) Contact hours 3 x one hour lectures per week, 1 x one hour practice class per week, 1 x one hour computer laboratory class per week Total time commitment 170 hours Teaching period 23 July 2018 to 21 October 2018 Last self-enrol date 3 August 2018 Census date 31 August 2018 Last date to withdraw without fail 21 September 2018 Assessment period ends 16 November 2018 Semester 2 contact information
Time commitment details
Estimated total time commitment of 170 hours
Additional delivery details
An enrolment quota of 350 students applies per semester. Students will be enrolled in Experimental Design and Data Analysis in the opposite semester to which they are enrolled in Mathematics for Biomedicine. Please refer to the Handbook entry for MAST10016 Mathematics for Biomedicine for further information.
Last updated: 31 October 2023
Further information
- Texts
- Subject notes
- Related Handbook entries
- Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 31 October 2023