1. Handbook
  2. Subjects
  3. Biochemical & Pharmaceutical Engineering

Biochemical & Pharmaceutical Engineering (BIEN90004)

Graduate courseworkPoints: 12.5On Campus (Parkville)

You’re viewing the 2019 Handbook:
Or view archived Handbooks


Year of offer2019
Subject levelGraduate coursework
Subject codeBIEN90004
Semester 2
FeesSubject EFTSL, Level, Discipline & Census Date


This subject aims to build on the principles introduced in CHEN90031 Bioprocess Engineering to provide a more advanced understanding of biochemical production processes with a focus on pharmaceutical production. Students will learn about pharmaceutical and biochemical production processes in Australia and the Asia-Pacific region.


Pharmaceutical products will include opiates, blood plasma products, vaccines, monoclonal antibodies and other medicines. Unit operations will include the growth of animal, plant and fungal cells, cell disruption and methods for product purification, such as chromatography. Case studies will include the production of recombinant proteins and amino acids and the genetic techniques required to make these products. The sustainable production of other biochemicals will also be discussed, including biofuels and the growth of algae. Students will learn how cellular processes can be used by chemical engineers to improve process efficiencies, clean up our environment and reduce chemical waste. Regulation, Good Manufacturing Practice and Validation processes will be introduced, along with the design of laboratories, pilot plants and manufacturing facilities and associated utilities and services. Students will also be introduced to relevant analytical techniques used to track production and purity and will become familiar with the research literature in this field.

Intended learning outcomes


On completion of this subject the student is expected to:

  1. Describe typical production processes for common pharmaceuticals
  2. Discuss the role of chemical engineering in pharmaceutical development, the regulatory standards that apply to such products and the business drivers for product development
  3. Apply systems approaches to describe how changes to a cell can be used to make new biochemical products
  4. Describe the processes in research, development and practice that may increase the sustainability of biochemical and other production processes
  5. Describe a range of biochemical products and develop create strategies to produce and purify these products
  6. Discuss the synergies between biochemistry and chemical engineering.

Generic skills

  • In-depth technical competence in at least one engineering discipline
  • Ability to function effectively as an individual and in teams
  • Capacity for independent critical thought, rational enquiry and self-directed learning
  • Ability to communicate effectively, not only with engineers but also with the community at large.

Last updated: 3 April 2019