Fluid Dynamics (MCEN90008)
Graduate courseworkPoints: 12.5On Campus (Parkville)
Overview
Availability | Semester 2 |
---|---|
Fees | Look up fees |
AIMS
This subject builds upon previous fluids subjects, providing students with the basic skills necessary to calculate fluid flows around bodies. Broadly speaking the subject is divided into two units; Unit 1: potential flow and Unit 2: compressible flow. These could equally be described as subsonic and supersonic aerodynamics respectively. Fluid flows have broad reaching applications in many engineering systems and examples as broad as building ventilation, mixing, as well as meteorological applications are considered in unit 1. The supersonic course is more firmly concentrated on aeronautical / astronautical applications.
Both units will start from the basic equations of motion governing fluid flow, and build a useable set of tools that enable the students to calculate flow fields in potential and supersonic flows. This approach will give students a clear sense of the origins of the tools that they use, and also a clear sense of the limitations. Such knowledge is necessary since these theories provided much of the backbone to early computational fluid dynamics packages used in industry.
The two units are strongly linked by the same goal. Throughout the potential flow unit, we build slowly from first principles, proving the utility of potential flow solutions, adding building block flows until eventually the course culminates with a demonstration of how these techniques can be used to calculate the flow (and lift coefficient) of subsonic airfoils. The supersonic unit follows a similar approach, building from first principles, until we eventually develop a set of tools that enables the calculation of the flow (and lift coefficient) of supersonic airfoils. In doing so, students will be introduced to many aspects of supersonic aircraft design.
INDICATIVE CONTENT
This subject introduces students to analysis techniques used in subsonic and supersonic flows. Topics covered include (Unit 1) basic introduction to inviscid flow with and without vorticity; concepts and analysis using stream function and velocity potential; incompressible viscous flow past bodies with vortex shedding; magnus effect; complex velocity potential; (Unit 2) speed of sound; aerodynamic heating; normal and oblique shock waves; expansion fans; theories of thin airfoils; shock expansion theory; boundary layer and shock wave interactions; the `sound barrier’; experimental techniques.
Intended learning outcomes
INTENDED LEARNING OUTCOMES (ILO)
Having completed this unit the student is expected to be able to:
- Use complex velocity potential analysis to solve a variety of inviscid flow problems including incompressible flow past airfoils
- Use Matlab to find numerical solutions of certain more complicated flow situations
- Understand the basic features of subsonic airfoils, including lift, drag and stall
- Apply shock expansion theory to the solution of flow in a variety of situations including prediction of lift and drag of two-dimensional bodies in supersonic flow
- Apply Ackeret or linear theory to thin airfoils
- Understand the basic features of supersonic airfoil designs and appreciate the differences between subsonic and supersonic airframe design.
Generic skills
On completion of the subject students should have the following skills:
- Ability to apply knowledge of science and engineering fundamentals
- Ability to undertake problem identification, formulation, and solution
- Ability to utilise a systems approach to complex problems and to design and operational performance
- Ability to communicate effectively, with the engineering team and with the community at large
- Ability to function effectively as an individual and in multidisciplinary and multicultural teams, as a team leader or manager as well as an effective team member.
Last updated: 3 November 2022
Eligibility and requirements
Prerequisites
Both of:
Code | Name | Teaching period | Credit Points |
---|---|---|---|
COMP20005 | Engineering Computation |
Semester 2 (On Campus - Parkville)
Semester 1 (On Campus - Parkville)
|
12.5 |
MCEN30018 | Thermodynamics and Fluid Mechanics |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
AND, either:
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST20029 | Engineering Mathematics |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
Summer Term (On Campus - Parkville)
|
12.5 |
Or both of:
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST20009 | Vector Calculus |
Semester 2 (On Campus - Parkville)
Semester 1 (On Campus - Parkville)
|
12.5 |
MAST20030 | Differential Equations | Semester 2 (On Campus - Parkville) |
12.5 |
Corequisites
None
Non-allowed subjects
Students cannot enrol in and gain credit for this subject and -
- MCEN30004 Thermofluids 2 or
- MCEN30005 Thermofluids 3
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 3 November 2022
Assessment
Additional details
- Two assignments of up to 2000 words each, requiring 35-40 hours of work in total, due before week 10 of semester (15% each - 30% total)
- One practical laboratory report of up to 2000 words, requiring approximately 13-15 hours work, scheduled throughout the semester (10%)
- One 3 hour examination at the end of semester (60%)
HURDLE - students must pass the exam component to pass this subject.
Intended Learning Outcomes (ILOs) 1 and 3 to 6 are assessed in the examination and the assignments.
ILO 2 is assessed throughout the laboratories and assignments.
ILO 3 is assessed in the laboratory.
Last updated: 3 November 2022
Dates & times
- Semester 2
Principal coordinator Nicholas Hutchins Mode of delivery On Campus (Parkville) Contact hours 36 hours of lectures, 12 hours of tutorials and up to 10 hours of practical work. Total time commitment 200 hours Teaching period 29 July 2019 to 27 October 2019 Last self-enrol date 9 August 2019 Census date 31 August 2019 Last date to withdraw without fail 27 September 2019 Assessment period ends 22 November 2019 Semester 2 contact information
Time commitment details
200 hours
Last updated: 3 November 2022
Further information
- Texts
- Subject notes
- Related Handbook entries
This subject contributes to the following:
Type Name Specialisation (formal) Mechanical with Business Specialisation (formal) Mechanical Specialisation (formal) Mechatronics - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
Additional information for this subject
Subject coordinator approval required
- Available to Study Abroad and/or Study Exchange Students
Last updated: 3 November 2022