Handbook home
Aerospace Propulsion (MCEN90047)
Graduate courseworkPoints: 12.5On Campus (Parkville)
You’re currently viewing the 2019 version of this subject
About this subject
Contact information
Semester 2
Richard Sandberg
Overview
Availability | Semester 2 |
---|---|
Fees | Look up fees |
This subject will cover the aerodynamics and thermodynamics of aircraft gas turbines and rockets and provide the tools to design and evaluate the performance of jet engines.
Topics include:
- Understanding the requirements and background of jet engines, in particular how the requirements translate to the design of an engine.
- An overview of the key aerodynamical aspects of aircraft relevant to the propulsion system and how jet engines create thrust.
- Engine performance parameters. These are discussed in the context of thermal, cycle and propulsive efficiencies.
- Principles and layouts of jet engines. Different classes of engines will be looked at, such as turbojets, turbofans, and bypass ratios, turbine inlet temperature will be discussed.
- Fundamentals of compressible flow relevant to jet engines will be discussed, including stagnation quantities and choked nozzles.
- Dimensional analysis and non-dimensional variables of engines.
- How to configure compressors and turbines, with consideration of blade profiles, flow coefficient, cooling and losses.
- Rocket propulsion: what are the performance parameters and what are the benefits of staging?
Intended learning outcomes
Having completed this subject it is expected that the student be able to:
- Apply fundamental concepts to perform preliminary design and assessment of performance for an aircraft gas turbine.
- Recognise the challenges associated with gas turbine and rocket technology and appreciate the broad applicability of fluid dynamics and thermodynamics within mechanical and aerospace engineering.
- Identify the key parameters affecting engine performance.
- Design engine components using preliminary design software
Generic skills
On completion of this subject, students should have developed the following skills -
- The ability to undertake problem identification, formulation, and solution.
- The ability to utilise a systems approach to complex problems and to design and operational performance.
- The ability to undertake problem identification, formulation, and solution.
- The ability to apply knowledge of science and engineering fundamentals.
Last updated: 3 November 2022