Neuroscience of Behaviour & Cognition A (NEUR90013)
Graduate courseworkPoints: 12.5On Campus (Parkville)
About this subject
Contact information
April
Dr Robyn Brown
T: +61(0)3 9035 6592
E: robyn.brown@florey.edu.au
Dr Kathy Lefevere
T: +61 3 9035 7082
E: lefevere@unimelb.edu.au
Overview
Availability | April |
---|---|
Fees | Look up fees |
This subject is an intensive 5 consecutive day overview of the range of research methodologies used to understand how different structures, chemicals and neural response within the brain work together to achieve complex behaviour and cognitive functions. Through exposure to a selection of current research topics and available experimental methodologies the subject explains how the interplay between clinical populations’ studies, healthy subjects’ studies combined with animal models of behaviour contribute to advances in the field. The multi-disciplinary nature of this fast-developing field is emphasised through the various collaborations between the presenters from disciplines spanning Biomedical and Health Sciences, Psychology and Electrical Engineering. Seven themes are discussed as follows:
- Behaviour measures in healthy populations: Uncovering mechanisms underlying perception and behaviour.
- Clinical brain lesion populations: Providing insights into anatomic regions involved in cognition.
- Computational modelling: Understanding the auditory system to create artificial hearing devices.
- Rodent models: Understanding the genetic, physiological and pharmacological factors underlying human cognition and behaviour.
- Human electrophysiology: Explore the neural dynamics of perception.
- Neuropharmacology: How neurotransmitters modulate brain function.
A group project will focus on reward-encoding to demonstrate how an interdisciplinary approach played a critical role in informing our current understanding of how the brain processes reward. This example will also illustrate how a single element of brain function can have a vast array of consequence ranging from complex patterns of global economic behaviour through to clinical symptoms of addiction. Students are split into multi-disciplinary groups to analyse a set paper, each representing a different investigative technique for the same problem. Class presentations at the end of week allow each group to discuss their conclusions and share a class discussion illustrating the points outlined above.
Intended learning outcomes
On completion of this subject students will be able to:
- Gain knowledge of the major research approaches currently used to investigate the neural mechanisms underlying cognitive processes.
- Develop an awareness of current topics in cognitive neuroscience relevant to language, memory, vision, audition, attention, mood multi-sensory integration and executive function.
- Develop a basic understanding of how clinical populations can be used to inform our understanding of healthy cognitive processing and how studying healthy cognition can inform clinical research and potential treatment strategies.
- Develop a basic understanding of how rodent models can provide insights into human cognition.
- Appreciate what is required on a practical level to use different research approaches in cognitive neuroscience.
- Acquire a capacity to critically evaluate which approach / technology is best suited to investigate a particular aspect of cognitive function and to understand the benefits and limitations associated with each methodology.
- Read research papers with a greater awareness of the conceptual, theoretical and practical context in which the research was conducted.
- Become aware of the potential to initiate fruitful research collaborations with cognitive neuroscientists.
- Demonstrate the application of the principles learned in the subject to their research project.
Generic skills
On completion of this subject, students will have developed the following generic skills:
- Understanding of and critical reading skills in a wide range of research methodologies.
- Oral communication skills ranging from public speaking to interpersonal communication.
- High-level written communication skills.
- Team work skills and becoming aware of the value of collaborating with other disciplines.
- High organisation and time management skills in the short and loner term.
- The capacity to apply concepts learned in their own area of research.
Last updated: 3 November 2022