Differential Topology and Geometry (MAST90029)
Graduate courseworkPoints: 12.5Not available in 2020
For information about the University’s phased return to campus and in-person activity in Winter and Semester 2, please refer to the on-campus subjects page.
About this subject
Please refer to the LMS for up-to-date subject information, including assessment and participation requirements, for subjects being offered in 2020.
Overview
Fees | Look up fees |
---|
This subject extends the methods of calculus and linear algebra to study the geometry and topology of higher dimensional spaces. The ideas introduced are of great importance throughout mathematics, physics and engineering. This subject will cover basic material on the differential topology of manifolds including integration on manifolds, and give an introduction to Riemannian geometry. Topics include: Differential Topology: smooth manifolds, tangent spaces, inverse and implicit function theorems, differential forms, bundles, transversality, integration on manifolds, de Rham cohomology; Riemanian Geometry: connections, geodesics, and curvature of Riemannian metrics; examples coming from Lie groups, hyperbolic geometry, and other homogeneous spaces.
Intended learning outcomes
After completing this subject, students will gain:
- an understanding of the basic notions of Differential Topology, including smooth manifolds, vector bundles, differential forms and integration on manifolds;
- an understanding of the basic notions of Riemannian Geometry, including connections, curvature and geodesics;
- the ability to work with smooth manifolds, smooth maps, differential forms and Riemannian metrics;
- the ability to do geometric calculations in local coordinates;
- a knowledge of important examples of Lie groups and symmetric spaces;
- the ability to pursue further studies in this and related areas.
Generic skills
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include:
- problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies;
- analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis;
- collaborative skills: the ability to work in a team;
- time-management skills: the ability to meet regular deadlines while balancing competing commitments.
Last updated: 3 November 2022
Eligibility and requirements
Prerequisites
Both of the following, or equivalent.
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST20009 | Vector Calculus |
Semester 2 (On Campus - Parkville)
Semester 1 (On Campus - Parkville)
|
12.5 |
MAST30026 | Metric and Hilbert Spaces | Semester 2 (On Campus - Parkville) |
12.5 |
Corequisites
None
Non-allowed subjects
MAST90054
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 3 November 2022
Assessment
Due to the impact of COVID-19, assessment may differ from that published in the Handbook. Students are reminded to check the subject assessment requirements published in the subject outline on the LMS
Description | Timing | Percentage |
---|---|---|
Up to 60 pages of written assignments (three assignments worth 20% each, due early, mid and late in semester)
| Throughout the teaching period | 60% |
A written examination
| During the examination period | 40% |
Last updated: 3 November 2022
Dates & times
Not available in 2020
Time commitment details
170 hours
Last updated: 3 November 2022
Further information
- Texts
- Related Handbook entries
This subject contributes to the following:
Type Name Course Master of Science (Mathematics and Statistics) Course Ph.D.- Engineering Course Doctor of Philosophy - Engineering Course Master of Philosophy - Engineering Informal specialisation Mathematics and Statistics - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 3 November 2022