Computational Statistics & Data Science (MAST90083)
Graduate courseworkPoints: 12.5On Campus (Parkville)
For information about the University’s phased return to campus and in-person activity in Winter and Semester 2, please refer to the on-campus subjects page.
Please refer to the LMS for up-to-date subject information, including assessment and participation requirements, for subjects being offered in 2020.
Overview
Availability | Semester 2 |
---|---|
Fees | Look up fees |
Computing techniques and data mining methods are indispensable in modern statistical research and data science applications, where “Big Data” problems are often involved. This subject will introduce a number of recently developed methods and applications in computational statistics and data science that are scalable to large datasets and high-performance computing. The data mining methods to be introduced include general model diagnostic and assessment techniques, kernel and local polynomial nonparametric regression, basis expansion and nonparametric spline regression, generalised additive models, classification and regression trees, forward stagewise and gradient boosting models. Important statistical computing algorithms and techniques used in data science will be explained in detail. These include the bootstrap resampling and inference, cross-validation, the EM algorithm and Louis method, and Markov chain Monte Carlo methods including adaptive rejection and squeeze sampling, sequential importance sampling, slice sampling, Gibbs sampler and Metropolis-Hastings algorithm.
Intended learning outcomes
After completing this subject students should gain:
1. an understanding of theory and computing in modern statistics and data science, and how they are implemented in applications;
2. the skills of using nonparametric and Monte Carlo methods in statistics and data science; and
3. the ability to pursue further studies in this and related areas, or to be work ready as an applied statistician or a data scientist.
Generic skills
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include:
- problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies;
- analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis;
- collaborative skills: the ability to work in a team;
- time-management skills: the ability to meet regular deadlines while balancing competing commitments
Last updated: 3 November 2022
Eligibility and requirements
Prerequisites
One of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST30025 | Linear Statistical Models | Semester 1 (On Campus - Parkville) |
12.5 |
MAST30027 | Modern Applied Statistics | Semester 2 (On Campus - Parkville) |
12.5 |
Or
AND
Corequisites
None
Non-allowed subjects
None
Recommended background knowledge
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST90082 | Mathematical Statistics | Semester 1 (On Campus - Parkville) |
12.5 |
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 3 November 2022
Assessment
Due to the impact of COVID-19, assessment may differ from that published in the Handbook. Students are reminded to check the subject assessment requirements published in the subject outline on the LMS
Description | Timing | Percentage |
---|---|---|
Up to 40 pages of written assignments (two assignments worth 15% each) due mid and late semester
| During the teaching period | 30% |
Written examination
| During the examination period | 70% |
Last updated: 3 November 2022
Dates & times
- Semester 2
Coordinator Hamed Soleimani Mode of delivery On Campus (Parkville) Contact hours Contact Hours: 36 hours comprising 2 one-hour lectures per week and 1 one-hour practice class per week. Total time commitment 170 hours Teaching period 3 August 2020 to 1 November 2020 Last self-enrol date 14 August 2020 Census date 21 September 2020 Last date to withdraw without fail 16 October 2020 Assessment period ends 27 November 2020 Semester 2 contact information
Time commitment details
Estimated Total Time Commitment - 170 hours
Last updated: 3 November 2022
Further information
- Texts
- Related Handbook entries
This subject contributes to the following:
Type Name Course Graduate Diploma in Biostatistics Course Master of Data Science Course Master of Biostatistics Course Master of Commerce (Actuarial Science) Course Master of Science (Mathematics and Statistics) Course Ph.D.- Engineering Course Doctor of Philosophy - Engineering Course Master of Philosophy - Engineering Informal specialisation Mathematics and Statistics - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 3 November 2022