Analysis of High-Dimensional Data (MAST90110)
Graduate courseworkPoints: 12.5Not available in 2020
For information about the University’s phased return to campus and in-person activity in Winter and Semester 2, please refer to the on-campus subjects page.
About this subject
Please refer to the LMS for up-to-date subject information, including assessment and participation requirements, for subjects being offered in 2020.
Overview
Fees | Look up fees |
---|
Modern data sets are growing in size and complexity due to the astonishing development of data acquisition and storage capabilities. This subject focuses on developing rigorous statistical learning methods that are needed to extract relevant features from large data sets, assess the reliability of the selected features, and obtain accurate inferences and predictions. This subject covers recent methodological developments in this area such as inference for high-dimensional inference regression, empirical Bayes methods, model selection and model combining methods, and post-selection inference methods.
Intended learning outcomes
After completing this subject students should gain:
- A deeper understanding of statistical methods for high-dimensional data and their properties
- The ability to apply such methods using a statistical computing package and interpret the results
Generic skills
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include
- problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies;
- analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis;
- time-management skills: the ability to meet regular deadlines while balancing competing commitments;
- computer skills: the ability to use statistical computing packages.
Last updated: 12 November 2022
Eligibility and requirements
Prerequisites
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST90082 | Mathematical Statistics | Semester 1 (On Campus - Parkville) |
12.5 |
AND
One of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST30025 | Linear Statistical Models | Semester 1 (On Campus - Parkville) |
12.5 |
MAST90104 | A First Course In Statistical Learning | Semester 2 (On Campus - Parkville) |
25 |
Corequisites
None
Non-allowed subjects
None
Recommended background knowledge
Any of the following:
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST90085 | Multivariate Statistical Techniques | Not available in 2020 |
12.5 |
MAST90083 | Computational Statistics & Data Science | Semester 2 (On Campus - Parkville) |
12.5 |
MAST90084 | Statistical Modelling | Semester 1 (On Campus - Parkville) |
12.5 |
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 12 November 2022
Assessment
Due to the impact of COVID-19, assessment may differ from that published in the Handbook. Students are reminded to check the subject assessment requirements published in the subject outline on the LMS
Description | Timing | Percentage |
---|---|---|
Two written assignments amounting up to 50 pages, due mid and late semester
| Second half of the teaching period | 20% |
Written examination
| During the examination period | 60% |
Project
| End of the teaching period | 20% |
Last updated: 12 November 2022
Dates & times
Not available in 2020
Time commitment details
170 hours
Last updated: 12 November 2022
Further information
- Texts
- Related Handbook entries
This subject contributes to the following:
Type Name Course Master of Data Science Course Master of Science (Mathematics and Statistics) - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 12 November 2022