Advanced Statistical Modelling (MAST90111)
Graduate courseworkPoints: 12.5On Campus (Parkville)
For information about the University’s phased return to campus and in-person activity in Winter and Semester 2, please refer to the on-campus subjects page.
Please refer to the LMS for up-to-date subject information, including assessment and participation requirements, for subjects being offered in 2020.
Overview
Availability | Semester 2 |
---|---|
Fees | Look up fees |
Complex data consisting of dependent measurements collected at different times and locations are increasingly important in a wide range of disciplines, including environmental sciences, biomedical sciences, engineering and economics. This subject will introduce you to advanced statistical methods and probability models that have been developed to address complex data structures, such as functional data, geo-statistical data, lattice data, and point process data. A unifying theme of this subject will be the development of inference, classification and prediction methods able to cope with the dependencies that often arise in these data.
Intended learning outcomes
After completing this subject students should gain:
- An appreciation of the range and utility of advanced statistical models and a sound knowledge of their analysis using modern statistical methods.
- An appreciation of the computational methods required to fit these models and the ability to interpret the results of an analysis.
Generic skills
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include
- problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies;
- analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis;
- time-management skills: the ability to meet regular deadlines while balancing competing commitments;
- computer skills: the ability to use statistical computing packages.
Last updated: 3 November 2022
Eligibility and requirements
Prerequisites
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST90082 | Mathematical Statistics | Semester 1 (On Campus - Parkville) |
12.5 |
Plus one of:
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST30025 | Linear Statistical Models | Semester 1 (On Campus - Parkville) |
12.5 |
MAST90104 | A First Course In Statistical Learning | Semester 2 (On Campus - Parkville) |
25 |
Corequisites
None
Non-allowed subjects
None
Recommended background knowledge
Any of the following:
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST90085 | Multivariate Statistical Techniques | Not available in 2020 |
12.5 |
MAST90083 | Computational Statistics & Data Science | Semester 2 (On Campus - Parkville) |
12.5 |
MAST90084 | Statistical Modelling | Semester 1 (On Campus - Parkville) |
12.5 |
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 3 November 2022
Assessment
Due to the impact of COVID-19, assessment may differ from that published in the Handbook. Students are reminded to check the subject assessment requirements published in the subject outline on the LMS
Description | Timing | Percentage |
---|---|---|
Two written assignments amounting up to 50 pages, mid and late semester
| Second half of the teaching period | 20% |
Written examination
| During the examination period | 60% |
Project
| End of the teaching period | 20% |
Last updated: 3 November 2022
Dates & times
- Semester 2
Principal coordinator Guoqi Qian Mode of delivery On Campus (Parkville) Contact hours 36 hours comprising 2 one-hour lectures per week and 1 one-hour practice class per week. Total time commitment 170 hours Teaching period 3 August 2020 to 1 November 2020 Last self-enrol date 14 August 2020 Census date 21 September 2020 Last date to withdraw without fail 16 October 2020 Assessment period ends 27 November 2020 Semester 2 contact information
Time commitment details
170 hours
Last updated: 3 November 2022
Further information
- Texts
- Related Handbook entries
This subject contributes to the following:
Type Name Course Master of Data Science Course Master of Science (Mathematics and Statistics) - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 3 November 2022