Semiconductor Devices (ELEN90091)
Graduate courseworkPoints: 12.5Dual-Delivery (Parkville)
From 2023 most subjects will be taught on campus only with flexible options limited to a select number of postgraduate programs and individual subjects.
To learn more, visit COVID-19 course and subject delivery.
Overview
Availability | Semester 2 - Dual-Delivery |
---|---|
Fees | Look up fees |
This subject serves as an introduction to semiconductor devices. It describes the fundamentals, theory, material and physical properties of semiconductor devices. The following topics will be covered.
Fundamentals: Crystal properties and of the growth of bulk crystals and of epitaxial layers. Physical concepts related to atoms and electrons. These concepts may include the photoelectric effect, the Bohr model, quantum mechanics, and the periodic table.
Energy bands and charge carriers in semiconductors: Bonding forces and energy bands in solids, charge carriers in semiconductors, carrier concentrations, the drift of carriers in electric and magnetic fields, and the Fermi level.
Excess carriers in semiconductors: Optical absorption, luminescence, carrier lifetime and photoconductivity, and the diffusion of carriers.
Junctions: fabrication of pn junctions, equilibrium conditions, forward and reverse biased junctions in steady state, reverse bias breakdown, transient and AC conditions, metal-semiconductor junctions and heterojunctions. In the next part of the subject
PN junction diodes: junction diode, tunnel diodes, photodiodes, and light-emitting diodes and lasers.
Bipolar junction transistors (BJTs): amplification and switching, fundamentals of BJT operation, BJT fabrication, minority carrier distributions and terminal currents, generalised biasing, switching, the frequency limitations of transistors, and heterojunction bipolar transistors.
Field effect transistors (FETs): Topics may include junction FETs, the metal semiconductor FET and the metal-insulator-semiconductor FET.
Additional topics (if time permits): integrated circuits, lasers, pnpn switching devices, and microwave devices.
Intended learning outcomes
On completion of this subject, students should be able to:
- Explain the properties of semiconductor materials from first principles, including concept that include energy bands, charge carriers, drift and the Fermi level
- Articulate the behaviour of excess carriers in semiconductors, including optical absorption, luminescence, carrier lifetime and diffusion
- Analyse the properties of semiconductor junctions, including homojunctions, heterojunction, metal-semiconductor junctions, photodetectors and light-emitting diodes
- Explain and understand the frequency, speed and sensitivity limitations of transistors and advanced devices
- Model and simulate semiconductor devices to optimise their properties
- Apply the developed understanding towards applications of semiconductor devices in sensing, imaging, and communications
Generic skills
- Capacity for independent thought.
- Awareness of advanced technologies in the discipline.
- Ability to apply knowledge of basic science and engineering fundamentals.
- Ability to undertake problem identification, formulation and solution
- The ability to comprehend complex concepts and communicate lucidly this understanding
- The ability to confront unfamiliar problems In-depth technical competence in at least one engineering discipline.
- Ability to plan work and to use time effectively
- Ability to apply engineering methods to solve complex problems.
Last updated: 31 January 2024
Eligibility and requirements
Prerequisites
Code | Name | Teaching period | Credit Points |
---|---|---|---|
ELEN30011 | Electrical Device Modelling | Semester 2 (Dual-Delivery - Parkville) |
12.5 |
Corequisites
None
Non-allowed subjects
None
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 31 January 2024
Assessment
Semester 2
Description | Timing | Percentage |
---|---|---|
Final 3-hour examination. Intended Learning Outcomes (ILOs) 1-6 are addressed in this assessment.
| End of semester | 70% |
Mid-semester test. ILOs 1-6 are addressed in this assessment.
| Mid semester | 10% |
Submitted laboratory reports from workshop activities. Two workshop tasks are completed as a group activity by self-selected groups of 2-3 students. Laboratory reports should not exceed 15 pages in total over the semester. ILOs 1-6 are addressed in this assessment.
| Throughout the semester | 10% |
Submitted assignments. Two written assignments are to be completed individually. Assignments should not exceed 15 pages in total over the semester. ILOs 1-6 are addressed in this assessment.
| Throughout the semester | 10% |
Last updated: 31 January 2024
Dates & times
- Semester 2
Coordinator Kenneth Crozier Mode of delivery Dual-Delivery (Parkville) Contact hours 3 x one hour lectures per week. Two x three hour workshops in total over the semester. Total time commitment 200 hours Teaching period 25 July 2022 to 23 October 2022 Last self-enrol date 5 August 2022 Census date 31 August 2022 Last date to withdraw without fail 23 September 2022 Assessment period ends 18 November 2022 Semester 2 contact information
Kenneth Crozier- Kenneth.crozier@unimelb.edu.au
Last updated: 31 January 2024
Further information
- Texts
- Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 31 January 2024