Systems Modelling and Analysis (MCEN30020)
Undergraduate level 3Points: 12.5On Campus (Parkville)
About this subject
Contact information
Semester 1
Semester 2
Overview
Availability | Semester 1 Semester 2 |
---|---|
Fees | Look up fees |
This subject will cover the modelling of a range of physical systems across multiple domains as ordinary differential equations, and then introduce the mathematical techniques to analyse their open loop behaviour.
Topics include:
- Development of low order models of a range of electrical, thermal, mechanical, pneumatic and hydraulic dynamic systems
- Different representations of these systems (time and, frequency domains) and transformations between them (Laplace, Fourier and Z-transforms)
- Representations of systems – transfer functions, Bode plots, state space, block diagrams, etc
- Identification of linear time invariant systems (least squares identification)
- Relation to time domain properties of open loop responses – stability, oscillations, etc.
MATLAB will be used throughout the course to complement the presented concepts.
Please view this video for further information: Systems Modelling and Analysis
Intended learning outcomes
On completion of this subject, students should be able to:
- Apply fundamental mathematical tools to model, analyse and design signals and systems in both time-domain and frequency-domain
- Recognise the broad applicability of the mathematics of signals and systems theory, particularly within mechanical and mechatronic engineering
- Identify the parameters of linear time invariant systems using input-output data
- Use MATLAB to study the behaviour of signals and systems as they arise in a variety of contexts.
Generic skills
On completion of this subject, students should have developed the following skills:
- The ability to apply knowledge of science and engineering fundamentals
- The ability to undertake problem identification, formulation, and solution
- The ability to utilise a systems approach to complex problems and to design and operational performance
- The ability to undertake problem identification, formulation, and solution.
Last updated: 4 March 2025
Eligibility and requirements
Prerequisites
Option 1
All of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
ENGR20004 | Engineering Mechanics |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
ELEN20005 | Foundations of Electrical Networks |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
MAST20029 | Engineering Mathematics |
Summer Term (On Campus - Parkville)
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
Option 2
One of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST20009 | Vector Calculus |
Semester 2 (On Campus - Parkville)
Semester 1 (On Campus - Parkville)
|
12.5 |
MAST20032 | Vector Calculus: Advanced | Semester 1 (On Campus - Parkville) |
12.5 |
AND all of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
ENGR20004 | Engineering Mechanics |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
ELEN20005 | Foundations of Electrical Networks |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
MAST20030 | Differential Equations | Semester 2 (On Campus - Parkville) |
12.5 |
Corequisites
None
Non-allowed subjects
Code | Name | Teaching period | Credit Points |
---|---|---|---|
BMEN30006 | Circuits and Systems | Semester 1 (On Campus - Parkville) |
12.5 |
ELEN30012 | Signals and Systems |
Semester 1 (On Campus - Parkville)
Semester 2 (On Campus - Parkville)
|
12.5 |
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 4 March 2025
Assessment
Description | Timing | Percentage |
---|---|---|
Assignment 1
| Week 5 | 10% |
Assignment 2
| Week 8 | 15% |
Assignment 3
| Week 11 | 15% |
Written exam, closed book
| End of semester | 60% |
Additional details
Assignments up to 30 pages in total.
Last updated: 4 March 2025
Dates & times
- Semester 1
Coordinator Jonathan Eden Mode of delivery On Campus (Parkville) Contact hours 60 hours (3 hours of lectures and a 2 hour workshop each week) Total time commitment 170 hours Teaching period 26 February 2024 to 26 May 2024 Last self-enrol date 8 March 2024 Census date 3 April 2024 Last date to withdraw without fail 3 May 2024 Assessment period ends 21 June 2024 Semester 1 contact information
- Semester 2
Coordinator Simon Illingworth Mode of delivery On Campus (Parkville) Contact hours 60 hours (3 hours of lectures and a 2 hour workshop each week) Total time commitment 170 hours Teaching period 22 July 2024 to 20 October 2024 Last self-enrol date 2 August 2024 Census date 2 September 2024 Last date to withdraw without fail 20 September 2024 Assessment period ends 15 November 2024 Semester 2 contact information
Time commitment details
Expected 170 hours
What do these dates mean
Visit this webpage to find out about these key dates, including how they impact on:
- Your tuition fees, academic transcript and statements.
- And for Commonwealth Supported students, your:
- Student Learning Entitlement. This applies to all students enrolled in a Commonwealth Supported Place (CSP).
Subjects withdrawn after the census date (including up to the ‘last day to withdraw without fail’) count toward the Student Learning Entitlement.
Last updated: 4 March 2025
Further information
- Texts
- Related Handbook entries
This subject contributes to the following:
Type Name Course Master of Mechanical Engineering Course Bachelor of Science Course Master of Engineering Course Master of Mechatronics Engineering Course Bachelor of Design Specialisation (formal) Mechatronics Specialisation (formal) Mechanical Specialisation (formal) Mechanical with Business Major Mechatronics Engineering Systems Informal specialisation Science Discipline subjects - new generation B-SCI Major Mechanical Engineering Systems Major Mechanical Engineering Systems - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 4 March 2025