Advanced Statistical Modelling (MAST90111)
Graduate courseworkPoints: 12.5Not available in 2025
About this subject
Overview
Fees | Look up fees |
---|
Complex data consisting of dependent measurements collected at different times and locations are increasingly important in a wide range of disciplines, including environmental sciences, biomedical sciences, engineering and economics. This subject will introduce you to advanced statistical methods and probability models that have been developed to address complex data structures, such as functional data, geo-statistical data, lattice data, and point process data. A unifying theme of this subject will be the development of inference, classification and prediction methods able to cope with the dependencies that often arise in these data.
Intended learning outcomes
After completing this subject students should gain:
- An appreciation of the range and utility of advanced statistical models and a sound knowledge of their analysis using modern statistical methods.
- An appreciation of the computational methods required to fit these models and the ability to interpret the results of an analysis.
Generic skills
In addition to learning specific skills that will assist students in their future careers in science, they will have the opportunity to develop generic skills that will assist them in any future career path. These include
- problem-solving skills: the ability to engage with unfamiliar problems and identify relevant solution strategies;
- analytical skills: the ability to construct and express logical arguments and to work in abstract or general terms to increase the clarity and efficiency of analysis;
- time-management skills: the ability to meet regular deadlines while balancing competing commitments;
- computer skills: the ability to use statistical computing packages.
Last updated: 4 March 2025
Eligibility and requirements
Prerequisites
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST90082 | Mathematical Statistics | Semester 1 (On Campus - Parkville) |
12.5 |
AND
One of
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MAST30025 | Linear Statistical Models | Semester 1 (On Campus - Parkville) |
12.5 |
MAST90104 | A First Course In Statistical Learning | Semester 2 (On Campus - Parkville) |
25 |
Corequisites
None
Non-allowed subjects
None
Recommended background knowledge
Any of the following:
Code | Name | Teaching period | Credit Points |
---|---|---|---|
No longer available | |||
MAST90083 | Computational Statistics & Data Science | Semester 2 (On Campus - Parkville) |
12.5 |
MAST90084 | Statistical Modelling | Semester 1 (On Campus - Parkville) |
12.5 |
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 4 March 2025
Assessment
Description | Timing | Percentage |
---|---|---|
Two written assignments amounting up to 50 pages, mid and late semester
| Second half of the teaching period | 20% |
Written examination
| During the examination period | 60% |
Project
| End of the teaching period | 20% |
Last updated: 4 March 2025
Dates & times
Not available in 2025
Time commitment details
170 hours
What do these dates mean
Visit this webpage to find out about these key dates, including how they impact on:
- Your tuition fees, academic transcript and statements.
- And for Commonwealth Supported students, your:
- Student Learning Entitlement. This applies to all students enrolled in a Commonwealth Supported Place (CSP).
Subjects withdrawn after the census date (including up to the ‘last day to withdraw without fail’) count toward the Student Learning Entitlement.
Last updated: 4 March 2025
Further information
- Texts
- Related Handbook entries
This subject contributes to the following:
Type Name Course Master of Science (Mathematics and Statistics) Course Master of Data Science - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 4 March 2025