Advanced Solid Mechanics (MCEN90029)
Graduate courseworkPoints: 12.5On Campus (Parkville)
Overview
Availability | Semester 1 |
---|---|
Fees | Look up fees |
AIMS
This course will expand on the basic principles established previously in Solid Mechanics.
Methods of three-dimensional stress and strain analysis will be extended to allow the student to obtain solutions using analytical and/or numerical methods. These will include the analyses of principal stresses and strains, three dimensional Mohr’s circles, strain gauge experimentation and failure criteria. In addition, this unit will focus on plastic deformation of solids, including the analysis of residual stresses and the collapse load of structures. The responses of materials to fatigue and fracture, as well as their creep and viscoelastic behaviour, will also be explored. Finally, this unit will provide a number of examples of experimental applications of solid mechanics analysis based on modern research techniques.
The goal of Advanced Solid Mechanics is to consolidate the solid mechanics principles presented in the student’s Engineering degree, and the equip students with skills required to solve a range of engineering problems they have not seen before. In addition, this subject seeks to teach a number of modern research methods, techniques and skills by drawing on biomechanical research in the field of solid mechanics, and the major challenges in the field.
INDICATIVE CONTENT
The following topics, delivered through lectures, guest seminars, group problem solving activities, and tutorials, will be assessed:
- Three dimensional stress-strain analysis (weeks 1-2)
- Strength theories and yield criteria (weeks 3-4)
- Plastic behaviour of materials (weeks 5-6)
- Fracture Mechanics(weeks 7-8)
- Contact (weeks 9-10)
- Creep and Viscoelasticity (week 11)
- Biomechanics (week 12)
Intended learning outcomes
INTENDED LEARNING OUTCOMES (ILOs)
At the completion of this subject the student is expected to be able to:
- Understand advanced stress/strain correlations
- Obtain simple mathematical and physical relationships between mechanics and materials
- Model the plastic behaviour, as well as the fatigue, fracture and creep response, of common engineering materials
- Model an engineering structure without detailed instruction
- Establish links between theoretical and practical applications; identify problems and formulate solution strategies
- Expand their analytical and cognitive skills through learning experiences in a diverse range of solid mechanics topics
- Develop skills in collaborative leaning through small-group problem solving and communication
- Understand contemporary issues in solid mechanics research.
Generic skills
On completion of this subject students should have the following skills:
- Critical thinking and critical judgement of assumptions adopted
- Interpretation and analysis of data
- Ability to undertake problem identification, formulation, and solution
- Ability to apply knowledge of science and engineering fundamentals.
Last updated: 4 March 2025
Eligibility and requirements
Prerequisites
Code | Name | Teaching period | Credit Points |
---|---|---|---|
MCEN90026 | Solid Mechanics | Semester 2 (On Campus - Parkville) |
12.5 |
Corequisites
None
Non-allowed subjects
None
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 4 March 2025
Assessment
Description | Timing | Percentage |
---|---|---|
One small-group problem solving activity assessed in class. Assesses ILO 7.
| Week 4 | 10% |
Two assignments of equal weight totalling no more than 1000 words, due in weeks 7 and 10 (2 x 20%), requiring approximately 25-30 hours work each. Assesses ILOs 4, 5, 6.
| From Week 7 to Week 10 | 40% |
One written exam, assesses ILOs 1, 2, 3.
| End of semester | 50% |
Last updated: 4 March 2025
Dates & times
- Semester 1
Principal coordinator David Ackland Mode of delivery On Campus (Parkville) Contact hours 36 hours of lectures and workshops, and 12 hours of tutorials. Total time commitment 200 hours Teaching period 3 March 2025 to 1 June 2025 Last self-enrol date 14 March 2025 Census date 31 March 2025 Last date to withdraw without fail 9 May 2025 Assessment period ends 27 June 2025 Semester 1 contact information
Time commitment details
200 hours
What do these dates mean
Visit this webpage to find out about these key dates, including how they impact on:
- Your tuition fees, academic transcript and statements.
- And for Commonwealth Supported students, your:
- Student Learning Entitlement. This applies to all students enrolled in a Commonwealth Supported Place (CSP).
Subjects withdrawn after the census date (including up to the ‘last day to withdraw without fail’) count toward the Student Learning Entitlement.
Last updated: 4 March 2025
Further information
- Texts
Prescribed texts
Recommended texts and other resources
- Ugural & Fenster 5th Edition, Advanced Mechanics of Materials and Applied Elasticity
- Benham, Crawford and Armstrong, 2nd edition, Mechanics of Engineering Materials
- Juvinall and Marshek, 5th edition, Fundamentals of Machine Component Design
- Budynas, 2nd edition, Advanced Strength and Applied Stress Analysis
- Boresi and Schmidt, 6th edition, Advanced Mechanics of Materials
- Anderson, 3rd edition, Fracture Mechanics
- Subject notes
LEARNING AND TEACHING METHODS
The end of semester examination will gauge students’ ability to synthesise stress/strain correlations and mathematically model a common engineering design problem, for example, determining the correct geometry of a loaded body to avoid crack propagation (ILO 1 and 2). The exam will assess student’s ability to describe a contemporary issue in biomechanics research (ILO 8). The examination will also evaluate the student’s capacity to model material behaviour, for example, stresses and strains of materials under loading (ILO 3).
The two assignments focus on problem solving in the context of a specific engineering principle presented in the lectures. Students will be expected to analyse an engineering structure using mathematical modelling (ILO 4), and to formulate analytical solutions to loading a loading problem (ILO 5). In so doing, they will expand their capacity to think laterally and gain a degree of independence in the overall learning experience (ILO 6). The small-group problem solving activity (set in laboratory classes) aims to encourage peer-to-peer communication, expression of ideas, team-building, and development of oral skills (ILO 7). In order to evaluate the effectiveness of the group learning experience, the group activity will be assessed based on an inter-group peer-review evaluation and a short self-reflection piece. Feedback for the solution to the problem solving activity will be provided formatively by the lecturer. It is intended that this activity and the feedback prepare students for the two assignments tasks.
ASSESSMENT CRITERIA
Students will be assessed relative to the following criteria:
- Ability to undertake problem identification, formulation, and solution.
- Ability to critically think and critical judge assumptions adopted.
- Ability to interpretation and analysis of data.
- Ability to apply knowledge of science and engineering fundamentals.
- Ability to reflect on the work of others during group activities.
INDICATIVE KEY LEARNING RESOURCES
Students will have access to all lecture slides, lecture example problems and worked solutions as well as tutorial problem solutions through the LMS. The LMS will also contain links to electronic resources relevant to the course, publications, and will host active discussion forums where students may interact in a thread-forum-style medium.
- Related Handbook entries
This subject contributes to the following:
Type Name Course Ph.D.- Engineering Course Doctor of Philosophy - Engineering Course Master of Philosophy - Engineering Specialisation (formal) Mechanical Specialisation (formal) Mechatronics - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
- Available to Study Abroad and/or Study Exchange Students
Last updated: 4 March 2025