Handbook home
Reactor Engineering (CHEN30001)
Undergraduate level 3Points: 12.5On Campus (Parkville)
Overview
Availability | Semester 1 |
---|---|
Fees | Look up fees |
AIMS
This subject introduces students to aspects of reactor system design. Chemical reactors are at the heart of any major chemical process design. Chemical reaction engineering is concerned with the exploitation of chemical reactions on a commercial scale. Chemical reaction engineering aims at studying and optimizing chemical reactions in order to define the best reactor design. Hence, the interactions of flow phenomena, mass transfer, heat transfer, and reaction kinetics are of prime importance in order to relate reactor performance to feed composition and operating conditions.
This subject is one of the key parts of the chemical and biochemical engineering curriculum upon which a lot of later year material is built.
INDICATIVE CONTENT
- Kinetics of homogeneous reactions
- Design of single ideal reactors
- Multiple reactor systems
- Other design reactors (recycle reactors and temperature effects)
- Basics of non-ideal flow
- Models for reactors
- Mixed flow in model reactors.
Intended learning outcomes
INTENDED LEARNING OUTCOMES (ILOs)
On completion of this subject the student is expected to:
- Interpret data from both ideal and non-ideal batch, plug flow and mixed flow reactors
- Model more complex flowing reactor systems using combinations of idealized plug flow and continuously stirred tank ranks
- Design simple reactor systems
- Predict simple temperature profiles in reacting systems.
Generic skills
On completion of this subject students should have developed team work skills and enhance the following generic skills:
- Ability to undertake problem identification, formulation and solution
- Capacity for independent thought
- Ability and self-confidence to comprehend complex concepts, to express them lucidly and to confront unfamiliar problem.
Last updated: 5 December 2024