Advanced NMR Spectroscopy (CHEM90065)
Graduate courseworkPoints: 6.25On Campus (Parkville)
Overview
Availability | April |
---|---|
Fees | Look up fees |
This subject will discuss the theory of nuclear magnetic resonance (NMR) spectroscopy, relevant experimental techniques and its application in molecular structure determination. The theory of pulse Fourier Transform NMR will be presented along with the methods of spectral processing. Key aspects of proton chemical shift, spin-spin coupling and coupling constants will be discussed. 13C and heteronuclear NMR spectroscopy as well as the theory and application of advanced 2D techniques will also be detailed. A combination of 1D and 2D methods will be applied to determine the structure of complex molecules.
Intended learning outcomes
On the completion of this subject, students should be able to:
- Demonstrate an understanding of the fundamental aspects of NMR spectroscopy;
- Explain the various experimental NMR techniques for the measurement of different types of NMR spectra;
- Interpret and assign one- and two-dimensional NMR spectra and use the information to determine the structure of complex molecules
- Demonstrate an increased knowledge and understanding of chemical science;
- Use investigative skills, critical thought and the ability to evaluate information and to analyse experimental data
Generic skills
On completion of this subject, students should have:
- Advanced problem-solving and critical thinking skills
- An ability to evaluate the professional literature
- An understanding of the changing knowledge base
- A capacity to apply concepts developed in one area to a different context
- The ability to use conceptual models to rationalize experimental observations
Last updated: 5 February 2025
Eligibility and requirements
Prerequisites
Code | Name | Teaching period | Credit Points |
---|---|---|---|
CHEM30016 | Reactivity and Mechanism | Semester 1 (On Campus - Parkville) |
12.5 |
OR
Admission into one of:
• Master of Science (Chemistry) (MC-SCICHE)
• Master of Industrial Research (Chemistry) (MR-IRCHEM)
• Bachelor of Science (Degree with Honours) - Chemistry Specialisation (BH-SCI)
• Graduate Diploma in Science (Advanced) - Chemistry Specialisation (GDA-SCI)
Corequisites
None
Non-allowed subjects
CHEM90044 - Synchrotron & NMR Structural Techniques
Inherent requirements (core participation requirements)
The University of Melbourne is committed to providing students with reasonable adjustments to assessment and participation under the Disability Standards for Education (2005), and the Assessment and Results Policy (MPF1326). Students are expected to meet the core participation requirements for their course. These can be viewed under Entry and Participation Requirements for the course outlines in the Handbook.
Further details on how to seek academic adjustments can be found on the Student Equity and Disability Support website: http://services.unimelb.edu.au/student-equity/home
Last updated: 5 February 2025
Assessment
Description | Timing | Percentage |
---|---|---|
Written assignment involving the analysis and assignment of 1D and 2D NMR spectra
| After lecture 9 | 25% |
1.5-hr final examination
| During the assessment period | 75% |
Last updated: 5 February 2025
Dates & times
- April
Coordinator Colette Boskovic Mode of delivery On Campus (Parkville) Contact hours 18 hours comprising of 3 x 1 hr lectures each week and 2 x 1hr tutorials and 2 x 2hr tutorials spread across the four weeks. Total time commitment 85 hours Teaching period 22 April 2024 to 17 May 2024 Last self-enrol date 26 April 2024 Census date 3 May 2024 Last date to withdraw without fail 24 May 2024 Assessment period ends 14 June 2024 April contact information
What do these dates mean
Visit this webpage to find out about these key dates, including how they impact on:
- Your tuition fees, academic transcript and statements.
- And for Commonwealth Supported students, your:
- Student Learning Entitlement. This applies to all students enrolled in a Commonwealth Supported Place (CSP).
Subjects withdrawn after the census date (including up to the ‘last day to withdraw without fail’) count toward the Student Learning Entitlement.
Last updated: 5 February 2025
Further information
- Texts
- Related Handbook entries
This subject contributes to the following:
Type Name Course Master of Industrial Research (Chemistry) Course Master of Science (Chemistry) Course Graduate Diploma in Science (Advanced) Course Bachelor of Science (Degree with Honours) - Available through the Community Access Program
About the Community Access Program (CAP)
This subject is available through the Community Access Program (also called Single Subject Studies) which allows you to enrol in single subjects offered by the University of Melbourne, without the commitment required to complete a whole degree.
Please note Single Subject Studies via Community Access Program is not available to student visa holders or applicants
Entry requirements including prerequisites may apply. Please refer to the CAP applications page for further information.
Last updated: 5 February 2025